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Abstract

The scattering of nonlinearly interacting plane acoustic waves on a rigid elongated spheroid is considered. The foci of the

spheroid coincide with foci of the spheroidal coordinate system. The method of successive approximations is used to obtain

the solutions to the inhomogeneous wave equation in the first and second approximations. Asymptotic expressions are

offered for the components of the total acoustic pressure of the difference frequency wave, and the scattering diagrams for

these components are presented.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of scattering of acoustic waves by elongated spheroids was formulated for the first time in
Refs. [1,2]. In these studies, angular characteristics of the acoustic waves scattering by a soft and rigid
elongated spheroid were presented. The scattering of plane acoustic waves by thin, acoustically rigid and
resilient bodies of revolution was considered in Refs. [3,4]. The problem of plane acoustic wave diffraction by
a finite elongated resilient body of revolution was investigated in Ref. [5]. Here, asymptotic expressions for the
scattered field were derived. The problem of plane acoustic wave scattering by spheroidal shells was considered
in Refs. [6,7]. In contrast to previous works, these investigations research the surface waves reflected by the
scatterers. Several experimental studies of acoustic waves scattered by elongated bodies were discussed in
Refs. [8,9]. However, the problem of the interacting nonlinear acoustic waves scattered by an elongated
spheroid has not been examined. This problem arises when an acoustic parametric array is used for sonar
applications. In many practical cases, natural and artificial objects can be presented as the spheroidal
scattering objects. One example is sea cetaceans. This problem can also become important when coastal
ecological monitoring is carried out. This paper presents a study of scattering the nonlinearly interacting plane
acoustic waves by a rigid elongated spheroid.

2. Theory

To present the problem, the system of elongated spheroidal coordinates x, Z, j was chosen. The foci
of the spheroid coincide with the foci of the spheroidal coordinate system. The spheroid is formed by the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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ellipse x0 rotated about a major axis, which coincides with the x-axis of the Cartesian system. The geometry
of the problem is presented in Fig. 1. The coordinate surfaces are for the spheroids-x ¼ const and for the
two-sheeted hyperboloids-Z ¼ const.

Elongated spheroidal coordinates are related to Cartesian coordinates by the following expressions [10]:

x ¼ h0xZ; y ¼ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � 1Þð1� Z2Þ

q
cos j; z ¼ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � 1Þð1� Z2Þ

q
sin j,

where h0 ¼ d/2 and d is the interfocal distance. Spheroidal coordinates x, Z, j are considered within the limits:
1pxo1; �1pZp1; 0pjp2p.

The perfect spheroid was put into homogeneous medium. The spheroid’s surface is characterized by the
coordinate x0. Assuming that interacting plane high-frequency acoustic waves of the unit pressure amplitude
falls on the spheroid at an arbitrary polar angle y0 (y0 ¼ arccosZ0) and an azimuthal angle j0, we express the
acoustic pressure as

pni ¼ exp �iðknr0 cos y0 � ontÞ½ �, (1)

where kn, is the wavenumber, n ¼ 1,2 according to the waves with frequencies o1 and o2, and r0 is the radius-
vector of the polar coordinate system.

Consider an incident plane wave in the spheroidal coordinate system [11]:

exp iðont� knr0 cos y0Þ½ � ¼ �2 expðiontÞ
X1
m¼0

X1
lXm

i�lSmlðknh0; Z0ÞSmlðknh0; ZÞR
ð1Þ
ml ðknh0; xÞ cos mðj� j0Þ,

where Smlðknh0; ZÞ Is the normalized angular first-order function and R
ð1Þ
ml ðknh0; xÞ is the radial spheroidal

first-order function.
After the plane wave scattering on the spheroid, the scattered spheroidal wave of pressure will propagate as

an outgoing wave [12]

pnsðx; Z;jÞ ¼ 2 expðiontÞ
X1
m¼0

X1
lXm

Amlðknh0; x0ÞSmlðknh0; ZÞR
ð3Þ
ml ðknh0; xÞ cos mj, (2)

where the coefficient Amlðknh0; x0Þ is dependent on boundary conditions on the spheroid surface and
R
ð3Þ
ml ðknh0; xÞ is the radial spheroidal third-order function.
Fig. 1. Geometry of the problem.
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In this case, the spheroid is considered to be acoustically rigid, so the Neumann boundary condition must be
applied on the surface

qpni

qn
þ

qpns

qn

� �����
x¼x0

¼ 0 (3)

and the coefficient Amlðknh0; x0Þ will be determined by the following expression:

Amlðknh0; x0Þ ¼ �i
l�mSmlðknh0; Z0Þ

R
ð1Þ0

ml ðknh0; x0Þ

R
ð3Þ0

ml ðknh0; x0Þ
,

where R
ð1Þ0

ml ðknh0; x0Þ and R
ð3Þ0

ml ðknh0; x0Þ are the derivatives of the first- and third-order functions, em ¼ 1 for
m ¼ 0, em ¼ 2 for m40.

With the appearance of the scattered spheroidal wave, the total acoustic pressure of the primary field
around the spheroid will have the form

pð1Þ ¼ pni þ pns ¼
X1
m¼0

X1
lXm

Bmlðknh0Þ exp iðont� lp=2Þ
� �

þ
X1
m¼0

X1
lXm

Dmlðknh0Þ exp iðont�mjÞ½ �

" #

þ
X1
m¼0

X1
lXm

Bmlðknh0Þ exp �iðont� lp=2Þ
� �

þ
X1
m¼0

X1
lXm

Dmlðknh0Þ exp �iðont�mjÞ½ �

" #
, ð4Þ

where

Bmlðknh0Þ ¼ 2Smlðknh0; Z0ÞSmlðknh0; ZÞR
ð1Þ
ml ðknh0; xÞ cos mðj� j0Þ,

Dmlðknh0Þ ¼ 2Amlðknh0; x0ÞSmlðknh0; Z0ÞR
ð3Þ
ml ðknh0; xÞ cos mj.

To solve the problem of the nonlinear interaction of the primary high-frequency waves, we combine
expression (4) with its complex-conjugate part.

Nonlinear wave processes between incident and scattered waves surrounding the spheroid can be described
with the inhomogeneous wave equation [13]

r2pð2Þ �
1

c20

q2pð2Þ

qt2
¼ �Q ¼ �

�

c40r0

q2pð1Þ
2

qt2
, (5)

where Q is the volume density of the sources of secondary waves, c0 the sound velocity in the medium, e the
quadratic nonlinearity parameter, r0 the density of the unperturbed medium, and r(1) and r(2) the total
acoustic pressures of the primary and secondary fields.

It is important to note that the waves of the primary field are the high-frequency waves: incident plane
waves pi and scattered spheroidal waves ps with angular frequencies o1 and o2. The waves of the secondary
field are the waves that appear as a result of the nonlinear interaction of initial high-frequency waves. This
includes the difference frequency wave o2 � o1 ¼ O, the summation frequency wave o2+o1, and the second
harmonic waves 2o1, 2o2.

The wave equation (5) is solved by the method of successive approximations. In the first approximation, the
solution is represented by expression (4) for the total acoustic pressure of the primary field p(1). To determine
solution in the second approximation p(2), the right-hand side of Eq. (5) should feature four frequency
components: second harmonics of the incident waves (2o1, 2o2) and (o1+o2, o2�o1 ¼ O).

The expression for the volume density of secondary waves sources at the difference frequency O is

Q� ¼
2O2�

c40r0

X1
m¼0

X1
lXm

Bmlðk1h0ÞBmlðk2h0Þ cos Otþ

" X1
m¼0

X1
lXm

Bmlðk1h0ÞDmlðk2h0Þ cos ðOtþ lp=2�mjÞ

þ
X1
m¼0

X1
lXm

Bmlðk2h0ÞDmlðk1h0Þ cosðOtþmj� lp=2Þ þ
X1
m¼0

X1
lXm

Dmlðk1h0ÞDmlðk2h0Þ cos Ot

#
. ð6Þ
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To solve the inhomogeneous wave equation (5) with the right-hand side given by Eq. (6) in the second
approximation, we seek the solution in the complex form

pð2Þ� ¼
1

2
Pð2Þ� expðiðOtþ dÞ þ ðc: ~n:ÞÞ. (7)

Substitution of expression (7) into the inhomogeneous wave equation (5) gives the inhomogeneous
Helmholtz equation

r2Pð2Þ� þ k2
�Pð2Þ� ¼ �q�ðx; Z;jÞ, (8)

where k� is the wavenumber of the difference frequency O, and

q�ðx; Z;jÞ ¼
2O2�

c40r0

X1
m¼0

X1
lXm

Bmlðk1h0ÞBmlðk2h0Þ expðiOtÞ

"

þ
X1
m¼0

X1
lXm

Bmlðk1h0ÞDmlðk2h0Þ exp iðOtþ lp=2�mjÞ
� �

þ
X1
m¼0

X1
lXm

Bmlðk2h0ÞDmlðk1h0Þ exp iðOtþmj� lp=2Þ
� �

þ
X1
m¼0

X1
lXm

Dmlðk1h0ÞDmlðk2h0Þ expðiOtÞ

#
.

The solution to the inhomogeneous Helmholts equation (8) has the form of a volume integral of the product
of the Green function with the density of the secondary wave sources [13,14]:

Pð2Þ� ðx; Z;jÞ ¼
Z

V

q�ðx
0; Z0;j0ÞGðr1Þhx0hZ0hj0 dx

0 dZ0 dj0, (9)

where G(r1) is the Green function, r1 the distance between the current point of the volume M 0ðx0; Z0;j0Þ and the
observation point Mðx; Z;jÞ (Fig. 1), and hx0 ; hZ0 ; hj0 are the scale factors [15]:

hx0 ¼ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 � Z02

x02 � 1

s
; hZ0 ¼ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 � Z02

1� Z02

s
; hj0 ¼ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx02 � 1Þð1� Z02Þ

q
.

In the far field r05r, the Green function is determined by the asymptotic expression

Gðr1Þ ¼ expð�ik�r1Þ=r1 � exp �ik� h0x� h0x
0ZZ0 � h0x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Z2Þð1� Z02Þ

q� �� 	

h0x.

The integration in Eq. (9) is performed over the volume V occupied by the second wave sources and
bounded in the spheroidal coordinates by the relations

x0px0pxS; �1pZ0p1; 0pj0p2p.

This volume has the form of a spheroidal layer of the medium, stretching from the spheroid’s surface to the
nonlinear interaction boundary (Fig. 1). An external spheroid with coordinate xS appears to be the boundary
of this area. Coordinate xS is defined by the size of the nonlinear interaction area between the initial high-
frequency waves. This size is inversely proportional to the coefficient of viscous sound attention associated
with the corresponding pumping frequency. Beyond this area, the initial waves are assumed to attenuate
linearly.

After the integration with respect to coordinates j0 and Z0 (considering the high-frequency approximation),
Eq. (9) takes the form

Pð2Þ� ðx; Z;jÞ ¼ P
ð2Þ
�1ðx; Z;jÞ þ P

ð2Þ
�2ðx; Z;jÞ þ P

ð2Þ
�3ðx; Z;jÞ þ P

ð2Þ
�4ðx; Z;jÞ

¼ C�
1

k�h0Z

Z xS

x0

Tx0 sinðk�h0x
0ZÞdx0 �

Z xS

x0

T
sinðk�h0x

0ZÞ
x0

dx0
� 	

, ð10Þ
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where

C� ¼
8h2

0pO
2� expð�ik�h0xÞ

c40r0x
,

T ¼
X1
m¼0

X1
lXm

Bmlðk1h0ÞBmlðk2h0Þ þ
X1
m¼0

X1
lXm

Bmlðk1h0ÞDmlðk2h0Þ exp iðlp=2�mjÞ
� �"

þ
X1
m¼0

X1
lXm

Bmlðk2h0ÞDmlðk1h0Þ exp iðmj� lp=2Þ
� �

þ
X1
m¼0

X1
lXm

Dmlðk1h0ÞDmlðk2h0Þ

#

(from here on, the time factor expðiOtÞ is omitted).
Expression (10) for the total acoustic pressure of the difference-frequency wave Pð2Þ� ðx; Z;jÞ consists of four

spatial components. The first component P
ð2Þ
�1ðx; Z;jÞ corresponds to the part of the acoustic pressure of the

difference-frequency wave, that is formed in the spheroidal layer of the nonlinear interaction area by the
incident high-frequency plane waves o1 and o2. The second component P

ð2Þ
�2ðx; Z;jÞ describes the interaction

of the incident plane wave of frequency o1 with the scattered spheroidal wave of frequency o2. The third
component P

ð2Þ
�3ðx; Z;jÞ corresponds to the interaction of the scattered plane wave of frequency o2 with the

scattered spheroidal wave of o1. The fourth component P
ð2Þ
�4ðx; Z;jÞ characterises the interaction of two

scattered spheroidal waves with frequencies o1 and o2.

3. Results

To obtain the final expression of the total acoustic pressure of the difference-frequency wave Pð2Þ� ðx; Z;jÞ,
consider the first spatial component P

ð2Þ
�1ðx; Z;jÞ from Eq. (10), which characterizes the nonlinear interaction

between incident plane waves of high frequency

P
ð2Þ
�1ðx; Z;jÞ ¼

C�

k�h0Z

Z xS

x0

X1
m¼0

X1
lXm

Bmlðk1h0ÞBmlðk2h0Þx
0 sinðk�h0x

0ZÞdx0
"

�

Z xS

x0

X1
m¼0

X1
lXm

Bmlðk1h0ÞBmlðk2h0Þ
sinðk�h0x

0ZÞ

x
0 dx0

#
. ð11Þ

It should be noted that this is the only component that gives no information about the scatterer.
The boundaries of the integration layer are directly defined by the elongated spheroid shape.

Using representation of the plane wave in the spheroidal coordinate system and substituting Bmlðknh0Þ,
expression (11) takes the form

P
ð2Þ
�1ðx; Z;jÞ ¼

C�

k�h0Z

Z xS

x0

exp �ik�h0x
0Z

� �
x0 sinðk�h0x

0ZÞdx0 �
Z xS

x0

exp �ik�h0x
0Z

� � sinðk�h0x
0ZÞ

x
0 dx0

� 	
. (12)

After the final integration wit respect to the coordinate x0, the expression for the first component (12) has
the form

P
ð2Þ
�1ðx; Z;jÞ ¼ P

ð2Þ
�11 þ P

ð2Þ
�12 þ P

ð2Þ
�13 þ P

ð2Þ
�14, (13)

where

P
ð2Þ
�11;�12 � �

C�

2k2
�h2

0ZðZ0 � ZÞ
xS exp ik�h0ðZ0 � ZÞxS

� �
� x0 exp ik�h0ðZ0 � ZÞx0

� �� �
,

P
ð2Þ
�13;�14 � �

C�

2i
�Ei �ik�h0ðZ0 � ZÞxS

� �
þ Ei �ik�h0ðZ0 � ZÞx0

� �� �
and EiðaxÞ ¼

R
ððexpðaxÞÞ=xÞdx is the integral exponential function.

From expression (13) for the first component P
ð2Þ
�1ðx; Z;jÞ of the total acoustic pressure of the difference-

frequency wave, it follows that the scattering diagram of this component is determined by the function
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1=ðZ0 � ZÞ. This function depends on the coordinate Z0 or, the polar coordinate system, equivalent to the angle
of incidence y0 of the highfrequency plane waves. The scattering diagrams of the first component P

ð2Þ
�1ðx; Z;jÞ

are shown in Fig. 2 for angles of incidence of the high-frequency plane waves y0 ¼ 301 (k�h0 ¼ 5), and y0 ¼ 01
(k�h0 ¼ 0.5).

In the direction of the angle of incidence (with respect to the z-axis), the scattering diagrams have major
maximums. Increase of the amplitude of the spheroidal wave produced by the scatterer leads to additional
maximums in lateral directions (irrespective of the angle of incidence). This result is connected with the
increase of the function 1/Z. Increasing the extent of the interaction region (the coordinate xS) results in the
narrowing of the scattering lobes; this scenario corresponds to increasing the size of the re-radiating volume
around the scatterer.

The elongated spheroid has radial dimension x0 ¼ 1:005 with the semi-axes correlation 1:10. Acoustic
pressure of the difference frequency wave has been calculated in the far field of the scattering spheroid, i.e. in
the Fraunhofer region. Therefore, the scattering field can be considered as being shaped by. Shadowing of the
secondary waves sources by the scatterer itself can occur in the Rayleigh region. Here, it is necessary to take
into account wave dimensions of the scatterer as well as the distance to the point of observation Mðx; Z;jÞ. In
the cases presented in this contribution, the point of observation was at radial distances x ¼ 7 and 15, which
exceeded the length of the elongated spheroid by an order magnitude.

Now consider the second P
ð2Þ
�2ðx; Z;jÞ and third P

ð2Þ
�3ðx; Z;jÞ components from Eq. (10) for the total acoustic

pressure of the difference-frequency wave, these components characterise the nonlinear interaction of the
incident plane waves with the scattered spheroidal ones waves:

P
ð2Þ
�2ðx; Z;jÞ ¼

C�

k�h0Z

Z xS

x0

X1
m¼0

X1
lXm

Bmlðk1h0ÞDmlðk2h0Þ exp iðlp=2�mjÞ
� �

x0 sinðk�h0x
0ZÞdx0

"

�

Z xS

x0

X1
m¼0

X1
lXm

Bmlðk1h0ÞDmlðk2h0Þ exp iðlp=2�mjÞ
� � sinðk�h0x

0ZÞ

x
0 dx0

#
. ð14Þ
Fig. 2. Scattering diagrams of the spatial component P
ð2Þ
�1ðx; Z;jÞ of the total acoustic pressure produced by the difference-frequency wave

by a rigid elongated spheroid for f2 ¼ 1000 kHz, k1,2h0E40, h0 ¼ 0.01M, x0 ¼ 1.005 (relations axis-1:10), x ¼ 7, (1) f1 ¼ 880 kHz,

F� ¼ 120kHz, k�h0 ¼ 5, y0 ¼ 301, (2) f1 ¼ 988kHz, F� ¼ 12 kHz, k�h0 ¼ 0.5, y0 ¼ 01.
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Values of Bmlðknh0Þ and Dmlðknh0Þ are substituted into Eq. (14) and the plane wave expansion is used.
For the axially symmetrical scattering problem (perfect spheroid), the high-frequency asymptotic
forms the angular spheroidal 1st-order function Smlðknh0; ZÞ and the radial spheroidal 3rd-order function
R
ð3Þ
ml ðknh0; x

0
Þ [12,16]

R
ð3Þ
ml ðknh0; x

0
Þ

knh0x
0
!1

�
i�l�1

knh0x
0 exp iknh0x

0
� �

.

Then Eq. (11) takes the form

P
ð2Þ
�2ðx; Z;jÞ �

2iC�Aðk2h0Þ

k�k2h2
0Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� ZÞ

p Z xS

x0

exp �iðk2h0 � k1h0Z0Þx
0

� �
sinðk�h0x

0ZÞdx0
�

�

Z xS

x0

exp �iðk2h0 � k1h0Z0Þx
0

h i sinðk�h0x
0

ZÞ

x02
dx0
#
. ð15Þ

After the final integration [17], the expression for the 2nd component of the total acoustic pressure of the
difference-frequency wave takes the form

P
ð2Þ
�2ðx; Z;jÞ ¼ P

ð2Þ
�21 þ P

ð2Þ
�22 þ P

ð2Þ
�23 þ P

ð2Þ
�24, (16)

where

P
ð2Þ
�21;�22 � �

iC�Aðk2h0Þ

2k�k2h2
0Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Z0Þð1� ZÞ

p expðiu2xSÞ � expðiu2x0Þ
u2

� 	
,

P
ð2Þ
�23;�24 � �

C�Aðk2h0Þ

2k�k2h2
0Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Z0Þð1� ZÞ

p expð�iu2xSÞ

xS

�
expðiu2x0Þ

x0
� u2 Eið�iu2xSÞ � Eið�iu2x0Þ½ �

� 	
,

u2 ¼ ðk2h0 � k1h0Z0 � k�h0ZÞ.

The expression for the 3rd component P
ð2Þ
�3ðx; Z;jÞ is similar to expression (15). An analysis of equation (15)

shows that the behaviour of scattering diagrams for the components P
ð2Þ
�2ðx; Z;jÞ and P

ð2Þ
�3ðx; Z;jÞ is determined

mainly by the function 1
�
Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Z0Þð1� ZÞ

p
, where the dependence on the angle of incident y0 (that is Z0) is

not clear. The scattering diagrams of these components are shown in Fig. 3, for y0 ¼ 301 (k�h0 ¼ 5) and
y0 ¼ 01 (k�h0 ¼ 0.5). These diagrams have maximums in the backward and side directions (01 and 7901). The
increase of the wave size of the spheroidal scatterer leads to additional maximums, which depend on the angle
of incident of the high-frequency plane waves.

Now, we consider the fourth component P
ð2Þ
�4ðx; Z;jÞ of the total acoustic pressure of the difference-

frequency wave. This component characterises the nonlinear interaction of the scattered spheroidal waves with
frequencies o1 and o2:

P
ð2Þ
�4ðx; Z;jÞ ¼

C�

k�h0Z

Z xS

x0

X1
m¼0

X1
lXm

Dmlðk1h0ÞDmlðk2h0Þx
0 sinðk�h0x

0ZÞdx0
"

�

Z xS

x0

X1
m¼0

X1
lXm

Dmlðk1h0ÞDmlðk2h0Þ
sinðk�h0x

0ZÞ

x
0 dx0

#
. ð17Þ

After some algebraic manipulations, Eq. (17) takes the form

P
ð2Þ
�4ðx; Z;jÞ ¼ P

ð2Þ
�41 þ P

ð2Þ
�42 þ P

ð2Þ
�43 þ P

ð2Þ
�44, (18)
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Fig. 3. Scattering diagrams of the spatial components P
ð2Þ
�2ðx; Z;jÞ, P

ð2Þ
�3ðx; Z;jÞ of the total acoustic pressure produced by the difference-

frequency wave by a rigid elongated spheroid for f2 ¼ 1000 kHz, k1,2h0E40, h0 ¼ 0.01M, x0 ¼ 1.005, x ¼ 7, (1) f1 ¼ 880 kHz,

F� ¼ 120kHz, k�h0 ¼ 5, y0 ¼ 301, (2) f1 ¼ 988kHz, F� ¼ 12 kHz, k�h0 ¼ 0.5, y0 ¼ 01.
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where

P
ð2Þ
�41;�42 � �

C�Aðk2h0ÞAðk2h0Þ

2ik�k2k1h2
0Zð1� Z0Þð1� ZÞ

�u4 Eið�iu4xSÞ � Eið�iu4x0Þ½ �½ �,

P
ð2Þ
�43;�44 � �

C�Aðk2h0ÞAðk2h0Þ

4ik�k2k1h2
0Zð1� Z0Þð1� ZÞ

iu4
expð�iu4xSÞ

xS

�
expðiu4x0Þ

x0

� �
þ u2

4 Eið�iu4xSÞ � Eið�iu4x0Þ½ �

� 	
,

u4 ¼ ðk�h0 � k�h0ZÞ.

The scattering diagrams of the fourth component P
ð2Þ
�4ðx; Z;jÞ are shown in Fig. 4, for y0 ¼ 301 (k�h0 ¼ 5)

and y0 ¼ 01 (k�h0 ¼ 0.5). Their configuration is primarily determined by the function 1=Zð1� Z0Þð1� ZÞ of
Eq. (18). As indicated above, this function has a maximum in the backward direction and slightly depends on
the angle of incidence. Increasing of the spheroidal scatterer wave size results increases lateral scattering.

Fig. 5 presents the scattering diagrams of the total acoustic pressure in the difference-frequency wave
Pð2Þ� ðx; Z;jÞ according to the asymptotic expressions for spatial components. In this case, the angle of incidence
is y0 ¼ 301 (k�h0 ¼ 5) and y0 ¼ 01 (k�h0 ¼ 0.5), and the coordinate x ¼ 7.

It is emphasized that the figures illustrate the dependence of acoustic pressure Pð2Þ� ðx; Z;jÞ on the polar angle
y ¼ arccos Z but not on the angle of asymptote of the hyperbola Z. This presentation is conventionally
employed for the scattering diagrams in spheroidal coordinates [1–9].

The diagrams are presented in the xoz plane (Fig. 1). Polar angle y varies in the range 0–3601; the value of
the angle y ¼ 01 corresponds to the position of x-axis, and the value y ¼ 901 corresponds to z-axis. The arrow
here shows the direction of the initial plane wave incidence. The axisymmetry of the diagrams with respect to
x-axis has been taken into account and two diagrams with positive and negative directions of the angle
y ¼71801 have been combined.

Fig. 6 shows a spatial simulation of the scattering diagram of the total acoustic pressure Pð2Þ� ðx; Z;jÞ for
y0 ¼ 301 (k�h0 ¼ 5, x ¼ 7, an arrow indicates the direction of the initial wave incidence). It is a surface of
revolution, and the rotation axis is the larger axis of the elongated spheroid, that is the x-axis.
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Fig. 4. Scattering diagrams of the spatial component P
ð2Þ
�4ðx; Z;jÞ of the total acoustic pressure produced by the difference-frequency wave

by a rigid elongated spheroid for f2 ¼ 1000kHz, k1,2h0E40, h0 ¼ 0.01M, x0 ¼ 1.005, x ¼ 7, (1) f1 ¼ 880 kHz, F� ¼ 120 kHz, k�h0 ¼ 5,

y0 ¼ 301, (2) f1 ¼ 988kHz, F� ¼ 12 kHz, k�h0 ¼ 0.5, y0 ¼ 01.

Fig. 5. Scattering diagrams of the total acoustic pressure the difference-frequency wave Pð2Þ� ðx; Z;jÞ by a rigid elongated spheroid for

f2 ¼ 1000 kHz, k1,2h0E40, h0 ¼ 0.01M, x0 ¼ 1.005, x ¼ 7, (1) f1 ¼ 880 kHz, F� ¼ 120kHz, k�h0 ¼ 5, y0 ¼ 301, (2) f1 ¼ 988 kHz,

F� ¼ 12 kHz, k�h0 ¼ 0.5, y0 ¼ 01.
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4. Discussion

Although investigation of the linear scattering of acoustic waves by the elongated spheroid has been
considered previously, results of the scattering of the nonlinearly interacting acoustic wave were not reported.
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Fig. 6. Spatial model of scattering diagram of the total acoustic pressure the difference-frequency wave Pð2Þ� ðx; Z;jÞ by a rigid elongated

spheroid for f1 ¼ 880kHz, F� ¼ 120kHz, k�h0 ¼ 5, y0 ¼ 301, x ¼ 7.
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In most previous publications, the problem is investigated when the angles of incidence of acoustic waves are
y ¼ 01 and 901 [2–5]. In Eq. [2], the calculated diagrams of plane acoustic wave scattering by a similar size
spheroid (x0 ¼ 1:005, kh0 ¼ 10) at angle of incidence y ¼ 301 are presented. Also in this work the scattering
diagram has maximums symmetrical to the angle of incidence (mirror lobes) with respect to z-axis. At angle of
incidence y ¼ 01 forward scattering dominates [2,4]. The basic maximum is aligned with 1401. When the angle
of incidence is y ¼ 901 (lateral incidence), there are only two maximums—forward and backward.

An analysis of the acoustic pressure distribution of the difference-frequency wave scattered field shows that the
scattering diagrams have maximums in a backward direction. In direction to the angle of incidence, in lateral and
transverse directions, plane waves have maximums. Incident high-frequency plane waves form the scattering field
in backward and forward directions, and scattered spheroidal waves form the scattering field in transverse
direction. An increase in the wave size of the spheroidal scatterer changes maximum levels, and an increase in the
size of the interacting area around the elongated spheroidal scatterer leads to narrowing of these maximums.

It is important to note that in this work we considered the case when the scattered field is generated by the
secondary wave sources located in the volume around the spheroid. In the case of the linear scattering, these
sources are located on the surface of the spheroid. The mirror maximums 301 and 1501 appear as a result of
the asymptotics of the first spatial sum P

ð2Þ
�1ðx; Z;jÞ as confirmed in Ref. [2]. Therefore, the plotted scattering

diagrams are in conformity with the results of [2–5].
As for the numerical evaluation of the acoustic pressure, it is necessary to note the following. In view of the

complexity of mathematical calculations, the obtained asymptotics allow for qualitative evaluation of
the spatial distribution of the acoustic pressure in the scattered field. It would be more adequate to compare
the results with experimental data. Unfortunately, experiments in nonlinear conditions have not been carried
out. For the sake of better understanding of contribution of the separated sums into the cumulative acoustic
field, results were presented for two values of the wave dimension and the angle of incidence.

It should be noted, that description of wave processes in spheroidal coordinates have several peculiarities.
For example, comparing the acoustic pressure distribution at the distance from the scatterer, the results given
in Refs. [18,19] can be taken. Spheroidal coordinates in a far-field transform into spherical ones ðh0! 0Þ and
Pð2Þ� ðx; Z;jÞ ! Pð2Þ� ðr; y;jÞ. The results of this research are in agreement with results of prior studies of the
scattering process described in spherical coordinates.

5. Conclusion

The method of successive approximations has been used for the description of wave processes with weak
nonlinearity. This method allows for simultaneous analyses of both the initial scattering field and the second
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scattering field. The second field is considered as having only the difference frequency component. The
diagrams are presented that illustrate the distribution of acoustic pressure of the scattered field. In view of
the obtained theoretical results, the method of successive approximations is an adequate tool for solving the
problem of the scattering of nonlinearly interacting waves by an elongated spheroid.
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